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ABSTRACT 
Survival data are very common in clinical, chemical, and agronomic assays, among others. However, in practice, 
experiments are conducted so that all sample units are evaluated at the same time. These data are referred to as 
grouped survival data, which are a particular case of interval censoring and are characterized by an excessive 
number of ties. The study examines some of the existing parametric distributional models in accommodating 
various datasets and develops an extension termed the new odd exponential-Weibull distribution with 
applications to survival datasets. The research methodology used PDF and CDF plots of the Odd Exponential-
Weibull Distribution keeping one parameter constant and varying others. The results presented in Table 1 reflect 
the comparative analysis of some statistical models fitted to the AAML dataset, with an emphasis on their 
goodness-of-fit measures. The table provides parameters and their estimates for each model, along with standard 
errors and various goodness-of-fit criteria such as Log-Likelihood (LL), Akaike Information Criterion (AIC), 
Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), and Hannan-Quinn 
Information Criterion (HQIC). The log-likelihood (LL) values indicate the likelihood of the data given the model 
parameters. Among the models, the OEW model has the highest LL (-391.3732), suggesting it provides the best fit 
to the data by maximizing the likelihood. The AIC values assess the trade-off between the goodness of fit and the 
complexity of the model, where lower values indicate a better model. The research concluded by building upon 
privious work, this new distribution enhanced flexibility across several datasets. Thus, the study introduced the 
new distribution and evaluated its performance using lifetime and survival datasets. In addition, the research 
established the potential of the developed new distribution and its variants as promising alternatives in modelling 
positive data. 
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INTRODUCTION 
In probability theory and statistics, the exponential 
distribution also known as a negative exponential 
distribution is a continuous probability distribution 
that often concerns the amount of time until some 
specific event happens. It is a process in which events 
happen continuously and independently at a 
constant average rate. For example, the amount of 
money spent by the customer on one trip to the 
supermarket follows an exponential distribution. 
The exponential distribution is a probability 
distribution of time between events in the Poisson 
point process. The exponential distribution is 
considered as a special case of the Gamma 
distribution. Also, the exponential distribution is a 
continuous analogue of the geometric distribution, 
and it has the key property of being memoryless. 
While the exponential distribution models the time 
until the next event occurs, the related gamma 
distribution models the time until the kth event 
occurs, where k is the shape parameter.  
 

Conversely, the Poisson distribution models the 
count of events within a fixed amount of time. The 
exponential distribution is a continuous probability 
distribution that models the variables in which small 
values occur more frequently than higher values. 
Statisticians use the exponential distribution to 
model the amount of change in people’s pockets, the 
length of phone calls, and sales totals for customers. 
In all these cases, small values are more likely than 
larger values. Researchers in the medical sciences 
analyze the lifetime of dental and medical implants 
and are often in search of techniques to model 
certain risk factors in patients with rare or particular 
diseases toward survival (Edward et al., 2021).  
 
Daniel et al., (2022) propose a new probability 
distribution called Exponential-Exponential 
distribution, provide a comprehensive study of its 
theory and derive appropriate expressions for its 
statistical properties. The method of maximum 
likelihood was employed to estimate its parameters. 
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Magnus and Magnus (2019) proposed that the 
method of maximum likelihood estimation (MLE) has 
great intuitive appeal and generates estimators with 
desirable asymptotic properties. The estimators are 
obtained by maximization of the likelihood function, 
and the asymptotic precision of the estimators is 
measured by the inverse of the information matrix. 
Thus, both the first and second differential of the 
likelihood function need to be found and this provides 
an excellent example of the use of our techniques. The 
work presents theorems concerning the multivariate 
normal distribution and presents the first-order 
conditions and the information matrix. It then 
considers a system of non-linear regression equations 
with normal errors. 
 
Falaniet al. (2020) in the beginner's guide to 
maximum likelihood estimation discussed the basic 
theory of maximum likelihood, the advantages and 
disadvantages of maximum likelihood estimation, the 
log-likelihood function, the modeling application, and 
the conditional maximum likelihood function. In 
addition, a simple application of maximum likelihood 
estimation to a linear regression model. Thamer and 
Raoudha (2021) studied Lindley distribution with 
three parameters because of its high flexibility in 
modeling lifetime datasets. The parameters were 
estimated by five methods namely maximum 
likelihood estimation (MLE), ordinary least square 
(OLS), weighted mean squares, maximum product of 
spacing, and Cramer von Mises. Simulation 
experiments were performed with different sample 
sizes and different parameter values. The different 
methods were compared on the generated data by 
mean square error and mean absolute error.  
 
Helu (2022) estimated the shape parameters of the 
Kumaraswamy distribution by utilizing the maximum 
product spacing (MPS) method. The asymptotic 
normality properties of the estimators are 
implemented to obtain confidence intervals. In 
addition, bootstrap confidence intervals are 
calculated. Monte Carlo simulations have been carried 
out to compare the maximum product spacing (MPS) 
and the maximum likelihood estimation (MLE) 
methods. To assess the effectiveness of the proposed 
procedure, a numerical example based on real data is 
presented.  Singh et al., (2014) studied the 
consequences of using maximum product spacing as 
an alternative to maximum likelihood estimation. The 
problem of point estimation of the parameter of 
exponential distribution was considered. The 
proposed estimates have been compared with those 
based on the maximum likelihood based on simulated 
samples from an exponential distribution. 
 
Nassar and Farouq (2022) used the method of 
maximum product of spacing estimation to evaluate 
and estimate the efficiency of a new distribution 
called the Kies exponential distribution. Extensive 
simulation studies were carried out. Based on the 
simulation outcomes and real data analysis, 
maximum product spacing was recommended to 
evaluate and estimate the parameters of the Kies 
exponential distribution. Volovskiy and Udo (2020) 
studied the connections between the method of 

maximum product of spacing estimation and the 
method of maximum likelihood estimation using 
exponential distribution and Pareto distribution. 
The maximum product of the spacing predictor turns 
out to be useful to predict more than the maximum 
likelihood estimation predictor. A real data set was 
analyzed. 
 
RESEARCH METHODOLOGY 
According to Bourguignon et al., (2014), a CDF and 
pdf of the odd exponential-G family of distributions 
are given by: 
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where 0   is the scale parameter and 0x  , 

   ; ;m x and M x 
 are the pdf and CDF and 


 is the parameters’ vector of the baseline 

distribution.  
 
According to Sadiq et al., (2023), a random variable 
X is said to have Weibull distribution with scale 

parameter   and shape parameter 


 if its pdf and 
CDF are given as, 
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The Odd Exponential-Weibull Distribution 
Suppose that the baseline distribution M has Weibull 
distribution with pdf and cdf as in equations (3) and 
(4), then the pdf and cdf of Odd Exponential-Weibull 
distribution (OE-W) are defined by inserting 
equations (3) and (4) in equation (1) and equation 
(2) respectively. 
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The PDF and CDF plots of the Odd Exponential-
Weibull Distribution keeping one parameter 
constant and varying others are presented in Figures 
1 and 2 respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1: PDF Plot of Odd Exponential-Weibull 
Distribution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2: CDF Plot of Odd Exponential-Weibull 
Distribution. 

 
 
Survival and Hazard Functions of OE-W 
Distribution  
The survival function of a random variable X which 
follows the OE-W distribution is given by  
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The Survival function plots of the Odd Exponential-
Weibull Distribution keeping one parameter constant 
and varying others are presented in Figure 3.  

 
 

 
 
 
 
 
 
 
 
 
 
 

FIGURE 3: Survival Function Plot of the Odd 
Exponential-Weibull Distribution. 

 

The hazard function of a random variable X which 
follows the OE-Weibull distribution is given by  
                                                                                                                                               

 
1

; , ,

exp

OEW

x
h x

x

 




  



 


   
  
   

      
  (8) 

 
The hazard function plots of the Odd Exponential-
Weibull Distribution keeping one parameter constant 
and varying others are presented in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 4: Hazard Function Plot of the Odd 
Exponential-Weibull Distribution. 

 
RESULTS AND DISCUSSIONS 
Application to Real-Life Datasets 
At this point, we used some of the existing datasets 
to compare the performance of the proposed model 
and other related distributions. The PDF and CDF of 
competing distributions are the Odd Frechet-Odd-
Weibull distribution developed by Ul-Haq and 
Elgarhy (2018); the Extended Weibull distribution 
developed by Xie et al. (2002); the Weibull-Weibull 
distribution developed by Bourguinon et al. (2014); 
and the New Weibull-Weibull distribution developed 
by Tahir et al. (2014) are respectively given as;  
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Application to Survival Times (in months) of 
AAML Dataset 
The data set analysed by Yakubu and Doguwa (2017) 
represents Survival times (in months)  of a sample of 
101 patients with  Advanced Acute Myelogenous 
Leukaemia (AAML). The data are: 0.03, 8.882, 
41.118, 6.151, 17.303, 0.493, 9.145, 45.033, 6.217, 
17.664, 0.855, 11.48, 46.053, 6.447, 18.092, 1.184, 
11.513, 46.941, 8.651, 18.092, 1.283, 12.105, 48.289, 
8.717, 18.750, 1.48, 12.796 ,57.401, 9.441, 20.625, 
1.776, 12.993, 58.322, 10.329, 23.158, 2.138, 13.849, 
60.625, 11.48, 27.73, 2.5, 16.612, 0.658, 12.007, 
31.184, 2.763, 17.138, 0.822, 12.007, 32.434, 2.993, 
20.066, 1.414, 12.237, 35.921, 3.224, 20.329, 2.5, 
12.401, 42.237, 3.421, 22.368, 3.322, 13.059, 44.638, 
4.178, 26.776, 3.816, 14.474, 46.48, 4.441, 28.717, 
4.737, 15, 47.467, 5.691, 28.717, 4.836, 15.461, 
48.322, 5.855, 32.928, 4.934, 15.757, 56.086, 6.941, 
33.783, 5.033, 16.48,   6.941, 34.211, 5.757, 16.711, 
7.993, 34.77, 5.855, 17.204, 8.882, 39.539, 5.987, 
17.237. 
 
 
 
 
 

TABLE 1: M.L.E Goodness of Fit Measures for AAML Dataset. 

Model Parameters Estimates Standard Error 
Goodness of Fit 

Measures 
Rank 

OE-W 

𝛿 3.762e-05 2.814e-05 LL (-391.3732) 

1 

𝛼 1.514e-01 9.758e-03 AIC (788.7464) 

𝛽 6.980e-04 2.462e-04 CAIC (788.9913) 

   BIC (796.6213) 

   HQIC (791.9352) 

OFW 

𝛿 1.05885 0.23465 LL (-415.4612) 

5 

𝛼 0.36425 0.03202 AIC (836.9224) 

𝛽 0.44900 0.10506 CAIC (837.1673) 

   BIC (844.7973) 

   HQIC (840.1112) 
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Model Parameters Estimates Standard Error 
Goodness of Fit 

Measures 
Rank 

EW 

𝛿 1.101072 0.222415 LL (-395.2038) 

2 

𝛼 0.005601 0.000274 AIC (796.4076) 

𝛽 0.195931 0.004752 CAIC (796.6525) 

   BIC (804.2825) 

   HQIC (799.5964) 

WW 

𝛿 1.040e-01 2.240e-02 LL (-406.5038) 

4 

  1.317e-01 9.367e-03 AIC (821.0076) 

𝛼 1.417e-01 2.666e-05 CAIC (821.42) 

𝛽 5.588e-01 5.299e-05 BIC (831.5075) 

   HQIC (825.2594) 

NWW 

𝛿 1.659e-01 2.204e-02 LL (-402.7362) 

3 

  6.871e-01 4.987e-02 AIC (813.4724) 

𝛼 2.372e+00 2.015e-07 CAIC (813.8848) 

𝛽 1.109e+00 3.624e-06 BIC (823.9723) 

   HQIC (817.7242) 

 
Source: Fieldsurvey, 2024.                                                          
 
 
 

The results presented in Table 1 reflect the 
comparative analysis of some statistical models 
fitted to the AAML dataset, with an emphasis on their 
goodness-of-fit measures. The table provides 
parameters and their estimates for each model, 
along with standard errors and various goodness-of-
fit criteria such as Log-Likelihood (LL), Akaike 
Information Criterion (AIC), Consistent Akaike 
Information Criterion (CAIC), Bayesian Information 
Criterion (BIC), and Hannan-Quinn Information 
Criterion (HQIC). The log-likelihood (LL) values 
indicate the likelihood of the data given the model 
parameters. Among the models, the OEW model has 
the highest LL (-391.3732), suggesting it provides 
the best fit to the data by maximizing the likelihood. 
The AIC values assess the trade-off between the 
goodness of fit and the complexity of the model, 
where lower values indicate a better model. The 
OEW model exhibits the lowest AIC (788.7464), 
reinforcing its superior performance in balancing fit 
and complexity. The EW model also performs well 
with an AIC of  796.4076, ranking second among the 
models. The Consistent Akaike Information Criterion 
(CAIC), Bayesian Information Criterion (BIC), and 
Hannan-Quinn Information Criterion (HQIC): Similar 
to AIC, these criteria penalize complexity models, 
with the CAIC and BIC placing more emphasis on 
model simplicity.  
 
 
 
 
 
 
 
 
 

 
 
 
The OEW model consistently outperforms the others 
across these measures, with the lowest CAIC 
(788.9913), BIC (796.6213), and HQIC (791.9352) 
values, highlighting its robustness as the best-fitting 
model. The EW model also ranks second in these 
metrics, indicating it is a strong alternative, 
particularly when model simplicity is prioritized. 
The model ranking, based on the overall goodness-
of-fit measures, the OEW model is ranked first, 
indicating it is the most suitable model for the 
dataset among those considered.  
 
This is followed by the EW model in second place. 
Other models such as NWW, WW, and OFW exhibit 
higher AIC, BIC, and HQIC values, which indicate less 
optimal fits compared to OEW and EW. The analysis 
demonstrates that the OEW model maximizes the 
goodness of fit for the AAML dataset, as evidenced by 
its superior performance across multiple criteria 
including LL, AIC, CAIC, BIC, and HQIC. The EW model 
also shows a competitive performance, ranking 
second. The selection of the OEW model is supported 
by its ability to provide a robust fit while maintaining 
a balance between model complexity and predictive 
accuracy.

http://www.ijscia.com/


879 
 

Available Online at www.ijscia.com | Volume 5 | Issue 5 | Sep - Oct 2024  
 

International Journal of Scientific Advances                                                                                                   ISSN: 2708-7972 
    

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 5: Histogram Plot of Survival Times (in months) of AAML Dataset. 
 

Figure 5 represents a histogram and density plots 
that visualize the distribution of survival times (in 
months) for a cohort of 101 patients with Advanced 
Acute Myelogenous Leukemia (AAML). The curves 
represent different extensions of the Weibull model, 
such as OEW, OFW, EW, WW, and NWW. The 
histogram reveals a right-skewed distribution of 
survival times, indicating that a majority of patients 
experienced shorter survival periods, with a tail 
extending towards longer survival times. This 

pattern is commonly observed in survival data and 
suggests the need for survival analysis models that 
can accommodate such right-skewed distributions. 
The survival times of AAML patients exhibit a 
characteristic right-skewed distribution, as depicted 
in the histogram. The overlaid density curves 
representing different Weibull model extensions 
offer potential approaches for modelling and 
understanding the survival experience of this patient 
population. 

 
TABLE 2: M.L.E Goodness of Fit Measures for Remission Time of Bladder Cancer Dataset. 

Model Parameters Estimates 
Standard  

Error 
Goodness of Fit 

Measures 
Rank 

 
 

OE-W 

𝛿 5.805e-05 1.202e-05 LL (-422.521)  
 

1 
𝛼  1.559e-01 7.536e-04 AIC (851.042) 
 𝛽  1.412e-03 3.140e-04 CAIC (851.2355) 
   BIC (859.5981) 
   HQIC (854.5184) 

 
 

OFW 

𝛿 1.40049 0.16828 LL (-428.1673)  
 

2 
𝛼  0.42681 0.02324 AIC (862.3346) 
 𝛽  0.40994 0.06421 CAIC (862.5281) 
   BIC (870.8907) 
   HQIC (865.811) 

 
 

EW 

𝛿 1.527686 0.223849 LL (-437.4101)  
 

3 
𝛼  0.010282 0.001148 AIC (880.8202) 
 𝛽  0.198029 0.004389 CAIC (881.0137) 
   BIC (889.3763) 
   HQIC (884.2966) 

 
 

WW 

𝛿 0.748089 0.184193 LL (-623.537)  
 

5 
  0.192392 0.027448 AIC (1255.074) 
𝛼  0.002728 0.000159 CAIC (1255.399) 
 𝛽  0.179744 0.018205 BIC (1266.482) 

   HQIC (1259.709) 
 

NWW 
𝛿 0.044195 0.004041 LL (-527.7562)  

4   1.002325 0.068178 AIC (1063.512) 
𝛼  2.464115 0.002538 CAIC (1063.838) 
 𝛽  1.044347 0.082934 BIC (1074.921) 

   HQIC (1068.148) 

Source: Field Survey, 2024 
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Application to Remission Time of Bladder Cancer 
Dataset 
The data set was reported by Oguntunde et al., (2016) 
which represents the remission time of a random 
sample of 128 bladder cancer patients. The data are: 
0.08, 2.09, 3.48,4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 
3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57,5.06, 7.09, 
9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 
14.24, 25.82, 0.51, 2.54,3.70, 5.17, 7.28, 9.74, 14.76, 
26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 
2.64,3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 
4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05,2.69, 4.23, 
5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 
7.63, 17.12, 46.12, 1.26,2.83, 4.33, 5.49, 7.66, 11.25, 
17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 
3.02,4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 
11.98, 19.13, 1.76, 3.25, 4.50, 6.25,8.37, 12.02, 2.02, 
3.31, 4.51, 6.54, 8.5, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 
21.73, 2.07,3.36, 6.93, 8.65, 12.63, 22.69. 
 
In Table 2, we evaluated the performance of five 
different survival models (OE-W, OFW, EW, WW, 
NWW) on the Remission Time of Bladder Cancer 
dataset. The assessment focused on the Maximum 
Likelihood Estimates (MLE) of the model parameters 
and a set of goodness-of-fit metrics, including the Log-
Likelihood (LL), Akaike Information Criterion (AIC), 
Consistent AIC (CAIC), Bayesian Information Criterion 
(BIC), and Hannan-Quinn Information Criterion 
(HQIC). The MLEs represent the parameter values (δ, 
α, β) that maximize the likelihood function, indicating 
the most probable values given the observed data. 
Alongside these estimates, the standard errors are 
provided, offering insight into the precision of these 
estimates. For the OEW Model, the parameters (δ = 
5.805e-05, α = 1.559e-01, β = 1.412e-03) were 
estimated with relatively low standard errors, 
indicating high precision. For the OFW Model, the 
estimates (δ = 1.40049, α = 0.42681, β = 0.40994) 
show higher values with moderate standard errors, 
suggesting reasonable precision but less certainty 
compared to the OE-W model. For the EW Model, the 
parameter estimates (δ = 1.527686, α = 0.010282, β = 
0.198029) reveal a more modest fit with slightly 
larger standard errors.  
 
The WW and NWW Models, these models exhibited 
higher standard errors, particularly the WW model 

(with δ = 0.748089,    = 0.192392, α = 0.002728 β = 

0.179744), suggesting lower precision in these 
parameter estimates. The goodness-of-fit measures 
provide a quantitative assessment of how well each 
model describes the observed data. Lower values in 
these metrics generally indicate better-fitting models. 
For Log-Likelihood (LL), the OE-W model yielded the 
highest LL (-422.521), suggesting it provides the best 
fit among the models. The NWW and WW models had 
the lowest LL values (-527.7562 and -623.537, 
respectively), indicating poorer fits. For the Akaike 
Information Criterion (AIC), the OE-W model again 
performed best with the lowest AIC (851.042), 
reflecting a good balance between model fit and 
complexity. The WW model showed the highest AIC 
(1255.074), reinforcing its inadequacy in fitting the 
data well. These metrics follow a similar pattern, with 
the OE-W model consistently ranking as the best fit 
(CAIC = 851.2355, BIC = 859.5981, HQIC = 854.5184), 
while the WW model ranks the lowest (CAIC = 
1255.399, BIC = 1266.482, HQIC = 1259.709). The 
OEW Model has the lowest values across LL, AIC, CAIC, 
BIC, and HQIC, the OE-W model is the best-fitting 
model for the Remission Time of Bladder Cancer 
dataset. Its estimates are precise, and it provides the 
most accurate representation of the data.  
 
The OFW Model ranks second, showing a reasonable 
fit, but it is less optimal than the OE-W model. The 
EW Model, while performing better than the WW and 
NWW models, the EW model is outperformed by 
both the OE-W and OFW models. The WW and NWW 
Models are ranked lowest, indicating poor fit and less 
reliability in parameter estimation for this dataset. 
The analysis emphasizes the superiority of the OEW 
model for modelling the remission times in bladder 
cancer, given its superior fit and precise parameter 
estimates. The use of multiple goodness-of-fit 
measures provides a robust framework for model 
comparison, highlighting the importance of 
considering both model fit and complexity in 
selecting the most appropriate model for survival 
data analysis. The results suggest that the OEW 
model is well-fitted for this dataset, offering a 
nuanced and accurate understanding of the 
remission time distribution in bladder cancer 
patients. 

 

FIGURE 6: Histogram Plot of Remission Time of Bladder Cancer Dataset.
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Figure 6 represents a histogram and density plot that 
visualize the distribution of the remission time of the 
bladder cancer dataset. The curves represent 
different extensions of the Weibull model, such as 
OEW, OFW, EW, WW, and NWW. The histogram of 
the density plots reveals a right-skewed distribution 
of remission times, indicating that a majority of 
patients experienced shorter remission periods, 
with a tail extending towards longer remission times.  
 
 
 

Application to Strengths of Glass Fibres Dataset 
The data set analysed by Lakshmi et al., (2020) 
represents the strengths of 3.5 cm glass fibres from 
62 observations obtained by the National Physical 
Laboratory. The data are: 4.99, 3.97, 2.18, 3.14, 2.19, 
4.96, 2.66, 4.98, 3.37, 2.85, 4.88, 3.27, 4.29,3.29, 4.10, 
4.76, 4.49, 4.24, 2.85, 3.16, 2.16, 2.34, 3.84, 4.52, 2.89, 
4.87, 2.87, 2.40, 4.30, 3.73, 3.45, 4.98, 4.43, 2.09, 2.30, 
2.89, 2.53, 2.01, 4.94, 2.23, 4.15, 2.73, 3.59, 3.27, 4.70, 
2.14, 4.84, 4.46, 4.42, 2.57, 3.64, 3.54, 3.70, 3.95, 2.98, 
4.23, 3.78, 4.84, 3.54, 3.03, 2.98, 3.89. 

TABLE 3: M.L.E Goodness of Fit Measures for Strengths of Glass Fibres Dataset. 

Model Parameters Estimates 
Standard 

Error 
Goodness of Fit 

Measures 
Rank 

 
 

OE-W 

𝛿 2.032e-02 9.822e-03 LL (-82.88169)  
 

1 
𝛼  4.433e-01 5.711e-02 AIC (171.7634) 
 𝛽  3.087e-05 1.907e-05 CAIC (172.1772) 
   BIC (178.1448) 
   HQIC (174.2689) 

 
 

OFW 

𝛿 16.386555 0.353701 LL (-105.5214)  
 

3 
𝛼  0.670702 0.001410 AIC (217.0428) 
 𝛽  0.037742 0.004905 CAIC (217.4566) 
   BIC (223.4242) 
   HQIC (219.5483) 

 
 

EW 

𝛿 2.21011 0.63114 LL (-165.5327)  
 

4 
𝛼  0.03271 0.02137 AIC (337.0654) 
 𝛽  0.25541 0.01342 CAIC (337.4792) 
   BIC (343.4468) 
   HQIC (339.5709) 

 
 

WW 

𝛿 1.216e+00 1.615e-01 LL (-211.4376)  
 

5 
  9.721e-03 1.245e-03 AIC (430.8752) 

𝛼  8.388e-01 3.691e-05 CAIC (431.577) 
 𝛽  2.030e+00 5.695e-05 BIC (439.3837) 

   HQIC (434.2159) 
 

NWW 
𝛿 3.416e-03 1.017e-03 LL (-96.86083)  

2   1.809e+00 1.002e-01 AIC (201.7217) 

𝛼  3.777e-01 6.516e-06 CAIC (202.4234) 
 𝛽  1.332e+00 1.467e-05 BIC (210.7217) 

   HQIC (205.0623) 

Source: Field Survey, 2024 

The results presented in Table 3 reflect the 
comparative analysis of several statistical models 
fitted to the strengths of glass fibres, with an emphasis 
on their goodness-of-fit measures. The table provides 
parameter estimates for each model, along with 
standard errors and various goodness-of-fit criteria 
such as Log-Likelihood (LL), Akaike Information 
Criterion (AIC), Consistent Akaike Information 
Criterion (CAIC), Bayesian Information Criterion 
(BIC), and Hannan-Quinn Information Criterion 
(HQIC). The log-likelihood (LL) values indicate the 
likelihood of the data given the model parameters. 
Among the models, the OEW model has the highest LL 
(-82.88169), suggesting it provides the best fit to the 
data by maximizing the likelihood. The AIC values 
assess the trade-off between the goodness of fit and 
the complexity of the model, where lower values 
indicate a better model. The OEW model exhibits the 
lowest AIC (171.7634), reinforcing its superior 
performance in balancing fit and complexity. The 
NWW model also performs well with an AIC of 
201.7217, ranking second among the models.  
 

The Consistent Akaike Information Criterion (CAIC), 
Bayesian Information Criterion (BIC), and Hannan-
Quinn Information Criterion (HQIC): Similar to AIC, 
these criteria penalize complexity models, with the 
CAIC and BIC placing more emphasis on model 
simplicity. The OEW model consistently outperforms 
the others across these measures, with the lowest 
CAIC (172.1772), BIC (178.1448), and HQIC 
(174.2689) values, highlighting its robustness as the 
best-fitting model. The NWW model also ranks 
second in these metrics, indicating it is a strong 
alternative, particularly when model simplicity is 
prioritized.  
 
The model ranking, based on the overall goodness-
of-fit measures, the OEW model is ranked first, 
indicating it is the most suitable model for the 
dataset among those considered. This is followed by 
the NWW model in second place. Other models such 
as OFW, EW, and WW exhibit higher AIC, BIC, and 
HQIC values, which indicate less optimal fits 
compared to OEW and NWW. 
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The analysis demonstrates that the OEW model 
maximizes the goodness of fit for the AAML dataset, 
as evidenced by its superior performance across 
multiple criteria including LL, AIC, CAIC, BIC, and 
HQIC. The NWW model also shows a competitive 

performance, ranking second. The selection of the 
OEW model is supported by its ability to provide a 
robust fit while maintaining a balance between 
model complexity and predictive accuracy. 

 

FIGURE 7: Histogram Plot of Strengths of Glass Fibres.
 

Figure 7 presents the histogram density plot of the 
strengths of the glass fibres dataset. The histogram 
of the density plot exhibits a right-skewed 
distribution, suggesting a potential fit with the 
extensions of the Weibull models. The density curves 
visually support this notion, with the OEW curve 
demonstrating a closer association with the data. 
 
CONCLUSION 
The study examines some of the existing parametric 
distributional models in accommodating various 
datasets and develops an extension termed the new 
odd exponential-Weibull distribution with 
applications to survival datasets. Building upon prior 
work, this new distribution enhanced flexibility 
across several datasets. Thus, the study introduced 
the new distribution and evaluated its performance 
using lifetime and survival datasets. In addition, the 
research established the potential of the developed 
new distribution and its variants as promising 
alternatives in modelling positive data.  
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