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ABSTRACT 
This paper is about generalizing the formula for the Lorentz transformation of the electromagnetic four-
potential. In the conventional Lorentz transformation method, the X , Y , or Z  coordinate axis is determined 
as the direction of motion of system 'S  relative to system S . Then, a four-vector is transformed using a 
transformation matrix that matches the direction of motion of the system 'S  [1][2].  If the system 'S  moves 
in an arbitrary direction, it is possible to determine each component of the matrix by rotating the coordinate 
axes, but this process is complicated [3]. In this paper, a transformation formula is presented that allows the 
electromagnetic four-potential to be easily transformed into a Lorentz transform even if the direction of motion 
of the system 'S  is arbitrary. In the Discussion, new problems in electrostatic shielding were presented by 
discussing the motion of charged particles using the compact transformation equation. 
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INTRODUCTION 
This research aims to improve the reliability of 
electrostatic shields. This paper has revealed new 
concerns about the weaknesses of electrostatic 
shields. 
 
There is an electromagnetic four-potential 

 / , , ,x y zc A A A  on a system S , and the 

electromagnetic potential that appears in the system 
'S  moving with a velocity v  relative to the system 

S is  '/ , ' , ' , 'x y zc A A A . 

 
The Lorentz transformation of the electromagnetic 
four-potential that has been used conventionally 
refers only to the case where the system 'S  moves 
linearly in the directions of each of the three axes, 
and the following transformation formula is publicly 
known [4]. 
 
When the system 'S  is moving in the X -axis 
direction with a velocity v , the Lorentz 
transformation of the electromagnetic four-potential 
is 
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If the system 'S  is moving with velocity in the Y -
axis direction, 
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And if the system 'S  is moving with velocity in the 
axial Z  direction, 
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Where 

2 21/ 1 /v c    (4) 
/v c    (5) 

 
v  is the velocity of motion in a system 'S  
c  is light velocity 
 
STEPS TO OBTAIN COMPACT FORMULAS 
When equation (1) is written down for each 
component,
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Similarly, the components of equations (2) and (3) 
can be written as 
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When the direction of the velocity of motion of the 
system 'S  is arbitrary, the electromagnetic potential 
seen from the system 'S  can be obtained by 
integrating and describing equations (6), (7), and (8), 
and the transformation equation is as follows. 
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Here, / /A  and A  are the parallel and 
perpendicular to v , and can be defined as follows: 
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Substituting equation (10) into (9), we get 
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This formula allows us to calculate the 
electromagnetic four-potentials '  and 'A  as seen 
from a system 'S  moving with an arbitrary velocity 
vector v . 
 
 

VERIFICATION 
The fact that equation (11) is reliable as a Lorentz 
transformation can be proven as follows. If the four-
potential obeys the Lorentz transformation, the 
following relationship must hold. 
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By substituting equation (11) into the left side of 
equation (12), the right side of equation (12) is 
obtained as follows: 
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In the process of this derivation, the following 
relationship was used: 
 

 2 2
2 2

1 11
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                  (14) 

 
Therefore, it has been proven that equation (11) 
represents the Lorentz transformation of the 
electromagnetic four-potential. 
 
ADVANTAGES OF EQUATION (11) 
The conventional equations (1), (2), and (3) are 
written on the assumption that they deal with linear 
motion in the direction of the coordinate axes, but are 
not appropriate for curved motion. 
 
The advantage of equation (11) obtained in this paper 
is that it can be applied even if the direction of the 
velocity vector is arbitrary, and it can also be easily 
applied when the direction of the velocity changes 
over time. 
 
If we apply equation (11) under conditions where 
v c , then since 1  , equation (11) can be 
simplified as follows: 
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FIELD OF A SYSTEM ACCELERATING IN A 
CONSTANT POTENTIAL SPACE 
There is a space in which the electromagnetic four-
potential is given as follows: 
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   , , , ,0,0,0x y zA A A V    (16) 

 
Here, V  is assumed to be a constant value regardless 
of location in space. The electromagnetic potential 
appearing in a system 'S  moving with a velocity v  
can be obtained by substituting equation (16) into 
(11) as follows: 
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Moreover, the electric field 'E  and magnetic field 
'B  appearing in the system 'S  are expressed by the 

following equations. 
 

' grad ' '
t

 
  


E A    (18) 

' rot 'B A     (19) 
 
Substituting equation (17) into (18) and (19), we 
obtain the following equations. 
 

2' V d
c dt

 vE                    (20) 

' 0B                     (21) 
 
Equation (20) means that in a constant potential 
space, an accelerating system generates an electric 
field proportional to the background potential V and 
the acceleration /d dtv . Also, as shown in equation 
(21), there is no magnetic field. 
 
If the electric field and magnetic field in the system 
S  are Lorentz transformed into the electric field and 

magnetic field in a system 'S  without mediation the 
electromagnetic four-potential, equation (20) cannot 
be obtained. The reason is that some information is 
lost when the electromagnetic four-potential is 
converted into the electric field and magnetic field. 
The constant components contained in the 
electrostatic potential are lost via the operator grad . 
Also, the gradient components and constant vector 
components contained in the vector potential are lost 
via the operator rot . 
 
EQUATION OF MOTION FOR A CHARGED 
PARTICLE MOVING IN A  SPACE WITH A  
CONSTANT POTENTIAL 
If there is a charged particle moving with the system 
'S  and its charge is q , the force F  acting on the 

particle can be described as follows: 
 

' extq F E F    (22) 
 
Here, 'E  is the electric field that appears in the 
system 'S , and extF  is an external force acting on the 

charged particle due to a factor other than 'E . 
 

Substituting equation (20) into equation (22), we get 
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Here, the equation of motion of the particle is given 
by the following equation: 
 

dm
dt


vF     (24) 

Where 
m  is the Mass of the particle 
 
From equations (23) and (24), the following equation 
is obtained: 
 

2ext
V dm q
c dt

   
 

vF                   (25) 

 
Since 2/m qV c  on the right side of this equation 
is the dimension of mass, the particle has an apparent 
mass 'm  defined by the following equation. 
 

2' /m m qV c     (26) 
 
This formula means that the apparent mass of a 
charged particle changes depending on the 
background potential V . This will affect the 
cyclotron frequency, for example. 
 
In electronic devices that handle the movement of 
electrons very sensitively, if attention is not paid to 
the electric potential of the space in which the device 
is placed, the apparent mass of the electron will 
change, which can cause malfunctions. 
 
Even when space probes have passed sufficient 
system tests before launch, numerous unexpected 
malfunctions have been reported when they are 
actually deployed in space. The main trigger for these 
malfunctions is thought to be electrical stimuli from 
the sun or the Earth's radiation belts [5]. 
 
The reliability of spacecraft electrostatic shielding is 
typically examined for effects of ESD, EMI, and EMP 
[6], but the above discussion suggests that the effects 
of external potentials should also be considered. 
 
Even if the electric field inside the space inside the 
electrostatic shield of a probe is zero, the external 
electric potential will penetrate the inside of the 
shield, so even if there are electronic devices inside 
the shield, the electrons in the circuit will be affected 
by V  according to equation (20). 
 
To solve this problem, it is necessary to further 
improve the electrostatic shield of the probe. 
 
CONCLUSIONS 
The equations for the Lorentz transformation of the 
electromagnetic four-potential have been made 
compact, making it easier to apply these equations.
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Even if the electric potential in a space is constant, a 
charged particle moving in that space may be 
affected by that electric potential. This prediction 
suggests that in an environment where high-voltage 
systems and electronic devices coexist, a Faraday 
shield installed to protect the electronic device may 
not function effectively. 
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