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ABSTRACT 
The use of deep learning has been explored in various fields of science. Deep learning utilizes artificial neural 
networks which contain neurons arranged in layers to analyze data and generate predictions. Several deep 
learning architectures have been used in image recognition and analysis, including bioimage analysis in stem 
cell research. Stem cells, with their differentiation potential, are widely used in drug testing, disease modeling, 
and regenerative treatments. In stem cell research, it is essential to identify and track which cell lineage stem 
cells have differentiated into. Until recently, this has been done with the use of molecular labeling and manual 
methods, which are mostly subjective and error-prone. The use of deep learning to identify and classify stem 
cells offers potential solutions of automation, and cost-effectiveness, in addition to high performance accuracy. 
This article summarizes how deep learning can be used in identifying stem cells, along with their current 
limitations. 
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INTRODUCTION 
Recently, there has been a significant surge of 
research involving machine learning (ML) 
technologies in various science disciplines. ML has 
enabled scientists to push beyond the boundaries of 
what they could even think was possible decades 
ago. It has penetrated almost all scientific fields, from 
speech recognition to screening for new anti-cancer 
drugs.[1–3] Numerous factors might have 
contributed to this massive explosion of ML 
involvement in science, such as how high, intensive 
computing power has become more accessible due 
to the rapid advancement of various computer 
graphic processor units (GPUs) and central 
processing units (CPUs).[4] Indeed, high computing 
power is required because ML utilizes the ability of 
artificial neural networks (ANNs), which comprise 
many layers of basic computing cells or "neurons" to 
analyze results from given data input.[3,4] The 
primary goal of ML is to generate correct predictions 
of new, unknown data based on the provided input 
data. In order to accomplish this, we create 
mathematical models or algorithms which can be 
trained and optimized by feeding them with training 
data or "experiences". A branch of ML study called 
deep learning (DL) has gained much attention in 
recent years. Deep learning uses ANNs with multiple 
layers, whose performance can self-optimise as we 
increase its training data due to end-to-end 
training.[1,4]   
 
One of the rapidly evolving life science fields affected 
by DL technologies is bioimage analysis for stem 
cells. The stem cell is a class of undifferentiated 
progenitor cells, which possess the potential to 
differentiate into other particular cells while also 

showing the capacity to self-renew.[5] Based on their 
origins, they are classified into embryonic stem cells 
(ESCs), which are pluripotent stem cells, adult stem 
cells (ASCs), which are multipotent and lastly, 
induced pluripotent stem cells (iPSCs), which are 
derived from reprogrammed somatic cells.[5,6] In 
studying stem cells, it is essential to perform cell 
differentiation lineage tracing. This is usually done 
by molecularly labeling the cells. DL offers potential 
solutions to speed up stem cell study by providing 
means of automated cell identification and 
classification from microscopy images, without the 
use of molecular labeling.[5,7] This essay will 
attempt to summarise the basics of how we can 
utilize DL in stem cell research, along with their 
applications, current limitations, and what they 
might bring to the future of this developing field of 
science. 
 
BASIC PRINCIPLES 
Basic Principles of Deep Learning 
DL involves the use of a deep neural network. A deep 
neural network comprises building units or neurons 
arranged in multiple hidden layers. Neurons within 
the same layer are disconnected from each other, 
while inter-layer neurons are connected adjacently 
through internal links or activation functions (Figure 
1).[8] Input datasets of a deep neural network are 
commonly divided into the training phase data 
(training set) and the test phase data (test set). Every 
neuron of the hidden layers in Figure 1 processes its 
input, then models a decision by using bias (b) and 
weight vector (W) in a connection function:  

 
hW,b(X) = f (WT X + b)
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Based on the above formula, the input neurons carry 
out data processing by multiplying their particular 
weight vector matrix and then adding a bias. The 
function output of this process is then relayed to the 
next neurons in the adjacent layers as input function. 
This relationship, in which the input features are 
extracted to the adjacent layer, enables further 
refinement and optimization of the input 
features.[2,8] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 1: Structure of a typical deep learning 
network. f(.) is the activation function. X represents 
the input layer, H and Y represent the hidden layers 
and output layer, respectively.[8] 
 

As mentioned before, the input dataset is separated 
into training and testing sets. The overall analysis 
procedure of the network relies on its training, 
where the network adjusts its own weights or other 
parameters based on several learning paradigms 
(activation/rectification functions) to generate the 
appropriate predictions.[8] To assess the training 
process, testing, validation, or performance 
comparison can be carried out. Testing and/or 
validation are used for error estimation and further 
improvements (Figure 2). The error here is 
expressed as the disparity between the predicted 
values and the correct true values, which can be 
computed using a loss function. In turn, loss 
functions are then influenced and adjusted by 
backpropagation of the testing results.[2,8] In 
general, the whole training process revolves around 
the use of activation functions to search through the 
layers until the ending threshold, and loss function 
minimisations to find the ideal parameter 
combinations. Specifically, activation functions here 
dictate the status of the neuron output 
(active/inactive) in relation to neurons in the next 
layer.[8] To summarise, DL uses hierarchical layers 
of ANNs to extract high-level features from low-level 
input data. Consequently, DL is less dependent on the 
user experience, as it uses end-to-end training of 
direct input-output recognitions between ANN 
layers to generate feature representations or 
predictions.[4,5] 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 2: The analysis process of a common deep learning network, which includes training datasets, model 
construction, training loop for parameter optimization, and performance assessment/validation. (Tang et al., 
2019). 
 
Convolutional Neural Network 
There are several common deep neural network 
architectural types, including convolutional neural 
network (CNN), recurrent neural network (RNN), 
deep belief network (DBN), and autoencoder (Tang 
et al., 2019; Maier et al., 2019). For stem cell 
research, CNN is one of the most prevalently utilized 
deep neural network models.[5,7]  

 
CNN is suitable for processing multiple arrays of 
tasks, such as object recognition, image aggregation, 
and image classification. Thus, it is frequently used in 
image-processing tasks.[8] The architecture of CNN 
reportedly dates back to 1980, when a pattern 
recognition neural network model called 
“Neocoginitron” was developed.[5] 
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In general, CNN workflow is split into two categories: 
feature extraction and classification.  Feature 
extraction task is carried out by convolution layers, 
nonlinear activators, and pooling layers, whereas 
deep neural network classifiers perform the 
classification task.[5,8] Convolution layers extract 
various sizes of feature maps based on the input data 
by applying some filters.[8] These layers start with 
recognizing lines, edges, and blobs of an image, 
which are the simpler features of the image. Then, 
the deeper neurons in the subsequent layers will 
extract and identify more complicated features. The 
adjacent pooling layers will then perform reduction 
or subsampling to this convolution layer output and 
create pixel column vectors that extend across the 
layers’ depth.[2,5,8] High-level feature extractions 
are possible by repeating these convolution and 
subsampling processes through the use of activation 
functions, which turn neurons "on" or "off" in 
relation to the adjacent layer.[8]  

The stretched pixel column vectors from the pooling 
layer are then relayed to the fully connected layers, 
where final decisions for object classification are 
made.[5,8] Therefore, as we increase the number of 
layers, we can also increase the feature levels that 
the network will extract.[8] Lastly, a loss layer will 
measure the errors from the predicted values using 
a loss function. This loss layer can self-adjust its 
weight for the whole network. CNN performance can 
be enhanced by training, in which backpropagation 
of the error values to the previous layers improves 
the feature extraction process.[5,8] Because of its 
feature extraction, classification, and self-learning 
ability, the use of CNN has been explored extensively 
in biomedical science, from analyzing CT scans and 
MRI images of various diseases to predicting cell 
gene expression.[5,7,8] 
 
 

 

 

FIGURE 3: Structures of a CNN. The convolution layer recognizes objects, whereas the pooling layer 
subsamples the output of the convolution layer. Convolution and pooling layers are usually placed alternatively 
before the fully connected layer.[2] 
 
APPLICATIONS OF DEEP LEARNING 
CNN in Identification of Endothelial Cells 
Differentiated from Induced Pluripotent Stem 
Cells 
Since its introduction in 2006, induced pluripotent 
stem cells (iPSCs) have been prevalently used in drug 
testing, disease modeling, and regenerative 
medicine.[7,9] A number of advantages of using 
iPSCs might have contributed to this, such as their 
differentiation potential and the ability to acquire 
iPSCs without any ethical concerns, as they are 
derived from reprogrammed somatic cells.[5,7] 
Observing and analyzing morphological changes is 
essential in studying iPSCs, as they go through 
various phases of differentiation. Thus far, this 
analysis depends on human expertise, which is time-
consuming, subjective, and error-prone. To 
overcome this limitation, Kusumoto et al. have 
explored the role of CNN in identifying and 
classifying endothelial cells differentiated from 
iPSCs.[10] 
 
First, the group differentiated the iPSCs into 
endothelial cells, and then fluorescent staining was 
performed to verify the differentiation, in which the 
differentiated cells would be stained. Phase 
contrast and binarised immunofluorescent images 
of these cells were then obtained as the datasets.  
 

 
The group managed to acquire a total of 800 images, 
of which 640 were included in the training phase, 
and 160 were used for validation. Afterward, phase 
contrast images were extracted for random input 
blocks. Furthermore, to create target blocks that 
match with the input blocks, matching binarised 
immunofluorescent and phase contrast images 
were also extracted. These entire target blocks 
were then binarised based on the white-black pixels 
ratio to give predictive values of "stained" (1) or 
"unstained" (0).  Finally, a small CNN (LeNet) and a 
large CNN (AlexNet) were used to analyze the input 
blocks. The goal was to create predictions from the 
phase contrast images and then compare them with 
the binarised target blocks. The small network was 
used to adjust the input and target block size, 
number of blocks, as well as staining threshold 
value in order to optimize its prediction. 
Subsequently, to train the whole network, the large 
network was used as a comparison to the small 
network results. The differences in these 
comparisons were then calculated and 
backpropagated for re-binarisation of the target 
blocks to improve the whole network performance. 
Eventually, K-fold cross-validation was used to 
validate this optimization process. Figure 4 
summarises the approach used in this study. 
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The overall performance of the network was 
evaluated using parameters, such as accuracy 
(correct prediction fractions) and F1 score (recall 
and precision amounts). Satisfactory performance of 
>90% accuracy and >75% F1 score was achieved by 
using this CNN workflow approach. However, there 
were some instances where this network performed 
poorly.  

For example, in the case of autofluorescences found 
in areas with dense colonies, non-specific 
fluorescences, and faint staining. Nevertheless, this 
study indicates that automated identification and 
classification of iPSC-differentiated endothelial cells 
based solely on morphological features is possible 
through the use of CNN. 

 

FIGURE 4: Utilisation strategy of CNN for identification and classification of iPSCs-derived endothelial cells. 
Input blocks are obtained from phase contrast images, then analyzed by CNN to create “stained” (endothelial 
cells) or “unstained” (non-endothelial cells) prediction. Matching features of the immunofluorescent images 
and phase contrast images (not illustrated) are then extracted and binarised to create target blocks as the 
correct answers. Analyzed input block predictions are contrasted to the true answers. The differences in the 
predictions are then used by the network to self-adjust its weight, improving the overall performance.[10] 
 
CNN in Early Identification of Differentiated Mice 
Pluripotent Stem Cells 
A more compelling performance of CNNs in 
detecting differentiated stem cells was 
demonstrated by Waisman et al. The group sought 
to train CNN models to identify and distinguish 
epiblast-like cells (EpiCLs) from undifferentiated 
mice ESCs (mESCs).[11] These EpiCLs were 
acquired by inducing mESCs differentiation. CNN 
training was performed at various time points from 
the onset of differentiation, and by using this 
approach, the networks were able to produce an 
impressive accuracy of >99% during the 24-48 
hours period. Moreover, the start of the correct 
predictions could be traced back to just 20 minutes 
after the differentiation was induced.  First, light 
microscope images of differentiating EpiCLs and 
undifferentiated mESCs were taken (Figure 5). 
These images were taken at 0, 2, 6, 12, and 24 h time 
points. The undifferentiated mESCs were cultured 
in a special medium called "2i+LIF" to maintain 
their undifferentiated condition. Next, the group 
used and trained ResNet50 CNN architecture, 
where around 800 images for both cell groups were 
used for the training phase. Additionally, 200 
images and 50 images per group were used for 
testing and validation, respectively. After a 
satisfactory performance was achieved using this 

approach, the group proceeded to add more images 
to the datasets with increased cell density and used 
another CNN architecture (DenseNet) to enhance 
the network performance. Both networks were able 
to show high accuracy without the need to perform 
image preprocessing or to increase the number of 
layers in each network.  
 
To analyze the prediction mechanisms behind the 
ResNet50 and DenseNet networks, the group 
translated activation layers in each network's 
hidden layers into pixels. A number of 49 layers 
with activations that correspond to the translated 
pixels were found among the 168 layers in 
ResNet50. Initially, the original images that were 
fed to this network were 480 rows by 640 columns 
in size and contained 3 channels.  In the final 
activation layer, which would feed the fully 
connected layers for predictions and optimizations, 
these images were found to be smaller in size (8 
rows by 3 columns), but the depth (channels) of 
these images had increased to 2,048, as the network 
stretched the pixel column vector. In contrast, 
images of the final activation layer in DenseNet 
were found to be larger in size and lower in depth, 
as the pixel column vector in DenseNet was 
stretched and then condensed by the network. This 
analysis method successfully showed the different 
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mechanism of each CNN architecture in performing 
the convolution, identification, classification, and 
prediction task.  
 
Finally, the group used data from 3 additional 
experiments to validate the predictions generated 
by both networks, which also resulted in a high 
accuracy value of 0.998 for DenseNet and 0.996 for 
ResNet50. Furthermore, the accuracy at a time 
point as early as 20 minutes after the differentiation 
induction was also found to reach above 80%. This 
was confirmed by using images in the 1-h dataset 
and calculating the accuracy in 10-minute intervals. 
However, there are several challenges and 
limitations in using this strategy for stem cell 
identification.  
 

First, lower probabilities of detecting the 2i+LIF 
group (undifferentiated cells) were found in both 
networks, meaning that both networks were biased 
more toward generating predictions for 
differentiated cells. The group suggested this was 
due to the fact that these networks used object 
borders to interpret an image. Therefore, it may be 
easier to identify differentiated cells, as they 
showed more apparent morphological features, 
such as spindles and plasma membrane 
protrusions. Lastly, high computing power might be 
needed since the CNNs used in this study contain a 
substantial number of layers, and a minimum 
number of 1400 images are required to generate 
accurate predictions. Nevertheless, this study 
shows how CNNs can be utilized to generate highly 
accurate and early predictions for stem cell 
identification. 

 

 
FIGURE 5: An overview of the experiment method used in this study. Two types of CNN architecture were used 
for analysis: ResNet50 and DenseNet.[11] 
 
FUTURE DIRECTIONS 
The two studies mentioned previously demonstrate 
how DL has been successfully used for bioimage 
analysis in stem cell research. With an average 
accuracy of >90%, these deep-learning models can 
easily exceed human expertise in identifying stem 
cells. Advantages, such as automation, rapid and 
accurate detection, and low cost compared to 
molecular procedures, will encourage the prevalent 
use of deep learning. However, sensitivity/specificity 
issues in identification tasks, high computing power, 
and storage needed for analyzing a large size of 
training datasets still become challenges that prompt 
further improvements.[10,11]  
 

 
More training, for example, by using specific datasets 
which deliberately train the DL network for false 
positives or negatives may be used to increase its 
accuracy.[10] In addition, open-set recognition 
networks, which also consider and adapt to new, 
"never-trained-before" data in real-time, should also 
be explored.[3] Cloud computing services dealing 
specifically with bioimaging data analysis and 
storage can be developed to overcome the current 
computing hardware limitations faced by many 
laboratories. Nevertheless, as the technologies in 
computer hardware and ML science advance, the 
goal of creating DL systems that are cost-effective, 
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user-friendly, with efficient and optimal 
performance will become more feasible.[3] With its 
ability, the prevalent use of DL in the future will bring 
significant impacts to biomedical science in general. 
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